A Method for Streamlining and Assessing Sound Velocity Profiles Based on MOV Algorithm
Abstract:
We presents a new streamlining and evaluation method based on the Maximum Offset of sound Velocity (MOV) algorithm. Based on measured SVP data, this method selects sound velocity data points by calculating the maximum distance to the sound-velocity-dimension based on an improved Douglas-Peucker Algorithm to streamline the SVP (Fig. 1). To evaluate whether the streamlined SVP meets the desired accuracy requirements, this method is divided into two parts: SVP streamlining, and an accuracy analysis of the multi-beam sounding data processing using the streamlined SVP. Therefore, the method is divided into two modules: the streamlining module and the evaluation module (Fig. 2). The streamlining module is used for streamlining the SVP. Its core is the MOV algorithm.To assess the accuracy of the streamlined SVP, we uses ray tracing and the percentage error analysis method to evaluate the accuracy of the sounding data both before and after streamlining the SVP (Fig. 3). By automatically optimizing the threshold, the reduction rate of sound velocity profile data can reach over 90% and the standard deviation percentage error of sounding data can be controlled to within 0.1% (Fig. 4). The optimized sound velocity profile data improved the operational efficiency of the multi-beam survey and data post-processing by 3.4 times(Fig. 5), indicating that this algorithm has practical value for engineering applications.