A Modelling Study of the Coastal Current in the Northwestern South China Sea: Response to Strong and Weak Southwest Monsoon

Yang Ding1, Jing Yu2, Xianwen Bao1 and Zhigang Yao3, (1)Ocean University of China, Key Laboratory of Physical Oceanography.MOE.China, Qingdao, China, (2)Ocean University of China, Qingdao, China, (3)North Carolina State University at Raleigh, Raleigh, NC, United States
Abstract:
The characteristics and dynamical mechanism of summer-time coastal current over the northwestern South China Sea (NSCS) shelf have been investigated based on a high resolution unstructured-grid finite volume community ocean model (FVCOM). Model-data comparison demonstrates that model well resolves the coastal dynamics over the NSCS shelf. The coastal current on the NSCS shelf is intensively influenced by monsoon and freshwater discharge of the Pearl River. Strong southwesterly wind drive the coastal current northeastward. However, under weak southwest monsoon, the coastal current west of Pearl River estuary (PRE) advects toward southwest, and splits into two parts when reaching east of the Qiongzhou Strait, with one branch entering the Gulf of Tonkin through the Qiongzhou Strait, transporting low salinity water into the Gulf of Tonkin, and the other part flows cyclonic and interacts with the northeastward current around southeast of Hainan Island, forming a cyclonic eddy east of the Qiongzhou Strait. A variety of model experiments focused on freshwater discharge, wind forcing, tidal rectification, and stratification are performed to study the physical mechanism of the southwestward coastal current which is usually against the summer wind. Process-oriented experiment results indicate that the southwest monsoon and freshwater discharge are important factors influencing the formation of southwestward coastal current during summer. Momentum balance analysis suggests that the along shelf barotropic pressure gradient due to the Pearl River discharge and wind forcing provides the main driving force for the southwestward coastal current.