Sorting of Terrestrial and Marine Organic Matter along a Marginal Submarine Canyon: Radiocarbon and Biomarker Signatures of Surface Sediments

Hilary G Close1,2, Shannon Doherty3, Pamela Campbell2, Matthew McCarthy4 and Nancy Prouty2, (1)University of California Santa Cruz, Institute of Marine Sciences, Santa Cruz, CA, United States, (2)U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, United States, (3)Allegheny College, Meadville, PA, United States, (4)University of California Santa Cruz, Ocean Sciences Department, Santa Cruz, CA, United States
Abstract:
Submarine canyons are incised features of many continental margins that can have significant influence on the hydrodynamic distribution of sediments and organic matter (OM) eroded and deposited from the continents. Baltimore Canyon, on the U.S. mid-Atlantic margin, contains a complex set of sedimentary processes that simultaneously create unique benthic habitats and control the deposition of OM. Along the canyon axis, loci of net erosion, net deposition, and intense winnowing each host diverse faunal assemblages and varying mixtures of sedimentary OM derived both from production in the overlying water column and from mobilized sediments. Bioavailable components of this deposited OM sustain benthic communities, while recalcitrant components can contribute to long-term carbon burial in the deep sea. Here we probe in detail the terrestrial versus marine origins of OM along a transect of Baltimore Canyon, as well as its bioavailability for benthic fauna, in order to explore how canyon-specific sediment dynamics might emplace a functional sorting of OM from shelf to open ocean.

Determining the provenance of sedimentary OM is a continual challenge: commonly-measured bulk geochemical properties often provide insufficient information to distinguish end-member sources. We present a novel approach to separate functional classes of OM and investigate sources and degradative pathways of OM in Baltimore Canyon. In combination with bulk geochemical characteristics, surface sediments from water depths of ~200‑1200 meters were sequentially extracted (solvent-extracted, acid-hydrolyzed, and demineralized) to separate pools containing different prevalence of terrigenous, marine, and recalcitrant OM. Each class was analyzed for biomarker distributions; amino acid content, 13C signatures, and degradation indicators; bulk carbon and nitrogen isotopes; and radiocarbon content in order to characterize potential end-member sources within the mixture, as well as their age profiles.  These geochemical properties were contextualized with accompanying sedimentological and ecological data. Results highlight the importance of coastal proximity, canyon morphology, and local hydrodynamics in determining the bioavailability of benthic organic matter and its potential for long-term carbon burial.