Chemical characterization of detrital sugar chains with peptides in oceanic surface particulate organic matter

Ayumi Tsukasaki, AIST - National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, Tamihito Nishida, Nagoya university, Nagoya, Japan and Eiichiro Tanoue, Nagoya university, Japan
Abstract:
For better understanding of the dynamics of organic matter in the ocean interior, particulate organic matter (POM) in oceanic surface water is a key material as a starting material in food chain and biological carbon pump, and the source of dissolved organic matter. POM consists of a mixture of non-living POM (detritus) and small amount of living POM (organisms). Particulate combined amino acids (PCAAs) are one of the major components of POM and the most important source of nitrogen and carbon for heterotrophic organisms in marine environments. In our previous studies of molecular-level characterization of PCAAs using electrophoretic separation (SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with specific detection of protein/peptide and sugar chains, we reported that most of PCAAs existed as small-sized peptide chains with carbohydrate-rich remnants. Although carbohydrates are one of the major carbon components of POM, the details of molecular-level structures including sugar chains are unknown. In this study, we applied electrophoretic separation for sugar chains (FACE: fluorophore-assisted carbohydrate electrophoresis) to the POM samples collected from the surface water of the Pacific Ocean. The results showed that sugar chains with various degree of polymerization were detected in POM. The possible roles of such sugar chains in marine biogeochemical cycle of organic matter are discussed in the presentation.