A modeling study on the Qiongzhou Strait westward current during summer

Xianwen Bao, Ocean University of China, Key Laboratory of Physical Oceanography.MOE.China, Qingdao, China and Shu Ren, Ocean University of China, Qingdao, China
Abstract:
The dynamic mechanism of Qiongzhou Strait westward current (QSWC) was studied using an advanced unstructured-grid finite volume coastal ocean model with high spatial resolution. The current in the Qiongzhou Strait (QS) flows westward all year round, even under southwest monsoon during summer season. Process-oriented experiments focused on wind, stratification, tide and river discharge were performed to examine the driving mechanism of the QSWC during summer. Numerical experiments results show that the QSWC is primarily caused by the tide-rectified flow. The connections between QSWC, West Guangdong coastal current (WGCC) and Gulf of Tonkin circulation (GOTC) were also evaluated. It shows that the WGCC could carry low-salinity water from the Pear River Estuary (PRE) into Gulf of Tonkin (GOT) through the QS and also contribute to the QSWC. We also examined the continuity of the coastal current system west of Guangdong based on the model experiments. It seemed that the coastal current was discontinuous when reached the QS. In addition, when QSWC was excluded in the model by closing the QS, the cyclonic circulation in the GOT still existed with reduced intensity. However, shutting down the QSWC had a great effect on modeling the salinity field in the GOT. The QS plays an important role in the water exchange between West Guangdong and GOT, therefore the QS need to be well resolved in a numerical model in order to accurately simulate the circulation system around West of Guangdong.