Gas Transfer Velocity in the Presence of Wave Breaking
Gas Transfer Velocity in the Presence of Wave Breaking
Abstract:
Wave breaking is known to intensify the gas exchange across the air–sea interface through air entrainment and enhancement of the near-surface turbulence. We proposed a composite model for the gas transfer velocity by examining the near-surface turbulence induced by wave breaking, which was determined based on the combination of the vertical distribution of the turbulence in the wave-affected layer and the breaking wave energy dissipation rate in the wave-breaking layer. The gas transfer velocity was calculated as a function of the air frictional velocity, wave age, and whitecap coverage. The model was validated for both the wind and wave-age dependence against field and laboratory measurements. The results supported the hypothesis that the large uncertainties in the traditional wind speed-based gas transfer velocities at moderate to high wind speeds can be ascribed to the neglect of the wind-wave effect, which is mainly attributed to the whitecap coverage as a function of the wind-wave Reynolds number.