Functional Morphology of Eunicidan (Polychaeta) Jaws

William Cyrus Clemo1 and Kelly M Dorgan1,2, (1)Dauphin Island Sea Lab, Dauphin Island, AL, United States, (2)University of South Alabama, Marine Sciences, Mobile, AL, United States
Abstract:
Polychaetes exhibit diverse feeding strategies and diets, with some species possessing hardened teeth or jaws of varying complexity. Species in the order Eunicida have complex, rigidly articulated jaws consisting of multiple pairs of maxillae and a pair of mandibles. While all Eunicida possess this general jaw structure, a number of characteristics of the jaw parts vary considerably among families. These differences, described for fossilized and extant species’ jaws, were used to infer evolutionary relationships, but current phylogeny shows that jaw structures that are similar among several families are convergent. Little has been done, however, to relate jaw functional morphology and feeding behavior to diet. To explore these relationships, we compared the jaw kinematics of two taxa with similar but evolutionarily convergent jaw structures: Diopatra (Onuphidae) and Lumbrineris (Lumbrineridae). Diopatra species are tube-dwelling and predominantly herbivorous, whereas Lumbrineris species are burrowing carnivores. Jaw kinematics were observed and analyzed by filming individuals biting or feeding and tracking tooth movements in videos. Differences in jaw structure and kinematics between Diopatra and Lumbrineris can be interpreted to be consistent with their differences in diet. Relating jaw morphology to diet would provide insight into early annelid communities by linking fossil teeth (scolecodonts) to the ecological roles of extant species with similar morphologies.