Pathways of Petermann Glacier’s Meltwaters, Greenland

Céline Heuzé, University of Gothenburg, Gothenburg, Sweden, Anna Wahlin, University of Gothenburg, Department of Marine Sciences, Gothenburg, Sweden, Helen Johnson, University of Oxford, Earth Sciences, Oxford, United Kingdom and Andreas Muenchow, University of Delaware, Newark, DE, United States
Abstract:
Radar and satellite observations suggest that the floating ice shelf of Petermann glacier, north Greenland, loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic water into the fjord and under the ice shelf. Although Greenland meltwaters are key to sea level rise projections and can potentially disrupt the whole ocean circulation, the fate of Petermann’s glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise onboard I/B Oden in August 2015. Two layers are found: one at 200 m (i.e. terminus depth) mostly on the eastern side of the fjord where a calving event occurred this summer, and one around 500 m depth (i.e. the grounding line) on the western side. At the sill, approximately 3 mSv of freshwater leave the fjord around 150 m on the eastern side. On the western side, a more complex circulation occurs as waters intrude in. Outside of the fjord in Hall Basin, only one layer is found, around 300 m, but its oxygen content and T-S properties suggests it is a mixture between Petermann’s meltwater, meltwater from the neighbouring glaciers, surface run-off and sea ice. As Atlantic water warms up, it is key to monitor Greenland melting glaciers to properly assess sea level rise.