Oil Spill Detection and their Impact on Climate in Shallow Coastal Areas in the Persian Gulf using Microwave Sensors

Pavan Kumar, Kumaun University, M.Sc. Remote Sensing and GIS, Almora, India and Swati Katiyar, Banasthali University, Remote Sensing, India
Abstract:
This paper is providing the study of geospatial technology to study the oil spill in various regions and develop oil spill risk management system to provide control and surveillance over large areas and provide tactical assistance in emergencies. Oil spill data which is been placed over GIS is interfaced with the relational database already been created for rapid access, retrieval and query, enhances strategic and strategic decision-making, potentially reducing incidence of spills by providing a deterrent factor and reducing the cost by providing rapid recovery solution. Microwave data are used to detect the oil spill in the shallow coastal region of Persian Gulf and spectral signatures are observed. Various observations can be extracted from this study like location of oil spill, quantity of oil spill and its distribution in effected coast or shoreline area. Satellite images with and without sun glint were studied as the spectral signature of oil slicks in the optical sphere of influence depends upon the viewing geometry and the solar angle in addition to the type of oil and its thickness. The oil slick with bright contrast observed by Microwave data showed lower temperature than oil-free areas. The GIS-based system can be used to establish the appropriate response and locate the dense areas in a slick and local surveillance, to permit clean-up vessels to detect the oil to be cleared in rapid circumstances. Oil spill verification has two parts: dark spot detection and feature extraction. The synergistic use of satellite observations and hydrodynamic modeling is recommended for establishing an early warning and decision support system for oil pollution response.

Keywords: Oil Spill, Microwave data, GIS