Time-Series Hyperspectral and Multi-spectral Radiometric Measurements at the Martha’s Vineyard Coastal Observatory

Steven E Lohrenz1, Anya M Waite2, E Taylor Crockford2 and Sumit Chakraborty1, (1)University of Massachusetts Dartmouth, New Bedford, MA, United States, (2)Woods Hole Oceanographic Institution, Woods Hole, MA, United States
Abstract:
High frequency temporal measurements are critical to resolving processes in dynamic coastal environments and geo-stationary satellites enable multiple observations over the course of a day. Such temporal resolution will be important in understanding rapid evolution of coastal physical processes (e.g., tides, wind forcing, water mass movement) as well as short-term changes in biological and chemical properties. The GEO-CAPE (Geostationary Coastal and Air Pollution Events) is one of 17 priority missions identified in the National Research Council’s Earth Science Decadal Survey and will provide high spatial and temporal resolution observations of tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality and biogeochemistry. At present, however there are a limited number of hyperspectral ocean color observations in coastal waters and even fewer time-series observations. Such data sets, particularly when coupled with supporting optical and water property observations, would be highly beneficial in evaluating sensor requirements and algorithm performance. Here, we describe results of comparisons of hyperspectral and multi-spectral radiometric observations deployed at a cabled coastal ocean observatory on the New England continental shelf, the Martha’s Vineyard Coastal Observatory (MVCO). The radiometric measurements are complemented by a broad suite of meteorological and hydrographic core measurements as well as efforts providing detailed characterization of changes in phytoplankton community structure with automated submersible flow cytometry and in-water optical properties (chl fluorescence, CDOM fluorescence, backscattering). Our findings illustrate the dynamic nature of this coastal ecosystem and the utility of hyperspectral radiometry and geostationary satellite observations to characterize short term variability in optical and biogeochemical properties of coastal environments.