Multi-model ensemble combinations of the water budget in the East/Japan Sea

Sooyeon HAN1, Naoki Hirose1, Norihisa Usui2 and Yasumasa Miyazawa3, (1)Kyushu University, Research Institute for Applied Mechanics, Fukuoka, Japan, (2)Meteorological Research Institute, Ibaraki, Japan, (3)JAMSTEC, Yokohama, Japan
Abstract:
The water balance of East/Japan Sea is determined mainly by inflow and outflow through the Korea/Tsushima, Tsugaru and Soya/La Perouse Straits. However, the volume transports measured at three straits remain quantitatively unbalanced. This study examined the seasonal variation of the volume transport using the multiple linear regression and ridge regression of multi-model ensemble (MME) methods to estimate physically consistent circulation in East/Japan Sea by using four different data assimilation models. The MME outperformed all of the single models by reducing uncertainties, especially the multicollinearity problem with the ridge regression. However, the regression constants turned out to be inconsistent with each other if the MME was applied separately for each strait. The MME for a connected system was thus performed to find common constants for these straits. The estimation of this MME was found to be similar to the MME result of sea level difference (SLD). The estimated mean transport (2.42 Sv) was smaller than the measurement data at the Korea/Tsushima Strait, but the calibrated transport of the Tsugaru Strait (1.63 Sv) was larger than the observed data. The MME results of transport and SLD also suggested that the standard deviation (STD) of the Korea/Tsushima Strait is larger than the STD of the observation, whereas the estimated results were almost identical to that observed for the Tsugaru and Soya/La Perouse Straits. The similarity between MME results enhances the reliability of the present MME estimation.