The OSMOSIS Model of the Wind-Driven Ocean Surface Boundary Layer.

Alan L Grant1, Stephen E Belcher1, Brodie Pearson2 and Jeff Polton3, (1)University of Reading, Reading, RG6, United Kingdom, (2)Brown University, Department of Earth, Environmental and Planetary Sciences, Providence, RI, United States, (3)National Oceanography Centre, Liverpool, United Kingdom
Abstract:
In the wind-driven ocean surface boundary layer (OSBL) the vertical velocity variance is observed to be larger than in shear driven turbulence. The observed variances are consistent with the results from large-eddy simulations (LES) which parametrize the interaction between the Stokes drift of the surface waves and vorticity. The resulting flow is known as Langmuir turbulence and the close connection between winds and waves suggests that Langmuir turbulence is common in the OSBL.

This poster describes a model of the OSBL, developed as part of the OSMOSIS project, in which mixing is by Langmuir turbulence. The transports of momentum, heat and salinity are represented by a first-order closure scheme with flux-gradient relationships that include non-gradient contributions. In this the model is similar to the KPP scheme which uses flux-gradient relationships with non-gradient contributions to represent scalar transports.

The flux-gradient relationships are derived from an analysis of the turbulent flux budgets of momentum and scalars (heat) obtained from LES. The non-gradient terms represent the contributions to the turbulent flux by the terms in the turbulent flux budget that represent the effects of the Stokes shear, buoyancy and turbulent transport. The eddy viscosity, diffusivities and non-gradient components are represented by similarity profiles.

The depth of the boundary layer is determined by a prognostic equation, which represents the time variation of the boundary layer depth in both unstable and stable conditions. It is based on the equation for the depth integrated potential energy combined with a parametrization of the turbulent kinetic energy budget. The use of the prognostic equation allows the effects of Langmuir turbulence on boundary layer depth to be explicitly represented in the model.

Comparison with the results from LES of the diurnal cycle of the OSBL are presented as a test for the model.