In Situ Observations of the Brazil-Malvinas Confluence in March 2015

Mikhail V Emelianov1, Josep L Pelegrí1, Jordi Isern-Fontanet1, Dorleta Orue1, Sergio Ramirez1, Joaquin Salvador1, Martin Saraceno2 and Daniel Valla3, (1)Institute of Marine Sciences, CSIC, Physical Oceanography, Barcelona, Spain, (2)Centro de Investigaciones del Mar y la Atmósfera (CIMA)/CONICET-UBA, UMI-IFAECI/CNRS, Buenos Aires, Argentina, (3)Consejo Nacional de Investigaciones Científicas y Técnicas / SHN, Argentina, Argentina
Abstract:
The Brazil-Malvinas Confluence (BMC) is the area where the Brazil and Malvinas Currents meet, respectively carrying waters of subtropical and subantarctic origin (Fig.1). As a result, the BMC plays a very important role in the meridional transfer of mass, heat, and salt, hence controlling the intensity of the returning limb of the Atlantic Meridional Overturning Circulation (AMOC). In this communication we describe the oceanographic conditions in the BMC region during March 2015, as sampled from the R/V Hespérides in the frame of the Spanish project “Tipping Corners in the AMOC” (CTM2011-28867). During the cruise we performed 66 hydrographic stations, and released 8 drifters and 9 floats (2 floats were recovered at the end of the cruise), in what turned out to be a high-resolution sampling of the frontal encountering of the Malvina and Brazil Currents and the resulting mesoscale and small-scale structures. The observations characterize the frontal collision of the two currents, each of them with speeds in excess of 1 m/s. This clashing creates a complex frontal system with very high horizontal gradients of physical and biochemical variables, certainly among the most intense open-ocean frontal systems in the world (e.g. cross-frontal gradients of temperature up to 1°C per kilometer). The frontal system is distinguished by thermohaline intrusions, eddies, filaments, and an offshore surface jet with speeds in excess of 2 m/s.

Fig. 1. (Left) BMC with a schematic of the surface circulation pattern (Combes and Matano, J. Geophys. Res., 119, 731-756, 2014). (Right) Detail of the BMC for 20 March 2015, with the sea level altimetry (in color) and surface geostrophic velocity fields (vectors); the study area is located within the area bounded by the green dots.