Production and Isolation of Amphibactin siderophores in Iron-stressed cultures of the marine bacteria Vibrio spp.

Craig McLean1, Rene Boiteau2, Randelle M Bundy3, Julia Gauglitz3 and Daniel Repeta4, (1)University of Arkansas, Fayetteville, AR, United States, (2)Woods Hole Oceanographic Institution, Woods Hole, MA, United States, (3)Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, United States, (4)Woods Hole Oceanographic Institution, Marine Chemistry & Geochemistry, Woods Hole, MA, United States
Abstract:
Iron is an important micronutrient for marine microbes. Low concentrations of dissolved iron limit production in much of the ocean, putting pressure on microbial communities to develop efficient iron acquisition strategies. One such strategy is the production of siderophores, high affinity iron binding ligands, to facilitate iron uptake to meet their physiological iron quota. Recently, our lab has shown that amphibactins, siderophores with lipid side chains, are present in iron-deficient regions of the ocean. However, little is known about which organisms can utilize amphibactin bound iron. Here we describe a method to isolate amphibactins from laboratory cultures in order to identify the conditional stability constants and uptake rates of purified amphibactin compounds. We searched the National Center for Biotechnology Information database to identify microbial genomes containing homologous to the known amphibactin biosynthesis genes. Several of these strains were screened with high performance reverse-phase liquid chromatography electrospray ionization mass spectrometry (HPLC-ESIMS) to confirm amphibactin production. We then optimized amphibactin production for the strain Vibrio cyclitrophicus 1F53 under different shaking speeds and iron concentrations, using a chrome azurol S (CAS) assay to screen for siderophore abundance. Maximum production was found after 38 hours of shaking at 150-rpm, and with the addition of 10nM of desferrioxamine B to induce iron limitation. Amphibactins were extracted from the media by solid phase extraction and purified by reverse phase HPLC. The conditional stability constants for several amphibactins were then measured in seawater using competitive ligand exchange absorptive cathodic stripping voltammetry with salicylaldoxime as the added ligand. Future work will determine the uptake rates of these compounds by natural communities of marine bacteria, and give insight on the bioavailability of amphibactins in the marine environment.