Application of a predator-prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity
Application of a predator-prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity
Abstract:
Because of the complexity and extremely large size of marine ecosystems, research attention has a strong focus on modelling the system through space and time to elucidate processes driving ecosystem state. One of the major weaknesses of current modelling approaches is the reliance on a particular grid cell size (usually 10’s of km in the horizontal & water column mean) to capture the relevant processes, even though empirical research has shown that marine systems are highly structured on fine scales, and this structure can persist over relatively long time scales (days to weeks). Fine-scale features can have a strong influence on the predator-prey interactions driving trophic transfer. Here we apply a statistic, the AB ratio, used to quantify increased predator production due to predator-prey overlap on fine scales in a manner that is computationally feasible for larger scale models. We calculated the AB ratio for predator-prey distributions throughout the scientific literature, as well as for data obtained with a towed plankton imaging system, demonstrating that averaging across a typical model grid cell neglects the fine-scale predator-prey overlap that is an essential component of ecosystem productivity. Organisms from a range of trophic levels and oceanographic regions tended to overlap with their prey both in the horizontal and vertical dimensions. When predator swimming over a diel cycle was incorporated, the amount of production indicated by the AB ratio increased substantially. For the plankton image data, the AB ratio was higher with increasing sampling resolution, especially when prey were highly aggregated. We recommend that ecosystem models incorporate more fine-scale information both to more accurately capture trophic transfer processes and to capitalize on the increasing sampling resolution and data volume from empirical studies.