Biogeochemical and physical controls on the distribution of dissolved organic carbon in the deep Gulf of Mexico and basins of the Caribbean

Andrew R Margolin and Dennis A Hansell, University of Miami, Miami, FL, United States
Abstract:
Over the past two decades, significant advances have been made in understanding dissolved organic carbon (DOC) distributions in the Atlantic and throughout the global ocean. Surprisingly, however, little is known about DOC distributions in the Atlantic’s neighboring Gulf of Mexico (GoM) and Caribbean due to few observations, especially in their deep layers. To address the dearth of DOC data in the GoM and Caribbean, samples were collected during multiple cruises spanning the region, allowing comparisons between the deep layers of the basins. Additionally, complementary biogeochemical (oxygen, nutrients) and physical (temperature, salinity) measurements were made to aid in DOC interpretation, which show clear distinctions between the deep waters of the GoM, basins of the Caribbean and Atlantic. The unique characteristics of these deep layers result from exchanges being restricted to narrow passages that separate the basins, limiting the deep water renewal to periodic overflows of relatively dense water, capable of penetrating below the ~2000 m sill depths. Furthermore, hydrocarbon seeps (in GoM) and hydrothermal activity (in Caribbean), along with the offshore oil industry have the potential to alter deep DOC concentrations regionally, which are considered here. Samples collected below 250 m show that concentrations decrease with depth, ranging from ~40-50 µmol kg-1. Compared to the Atlantic, the GoM and Venezuelan Basin concentrations are lower, while they are similar to the Atlantic in the Yucatan Basin; responsible processes are inferred.