Determine Age-structure of Gelatinous Zooplankton Using Optical Coherence Tomography

Hongsheng Bi1, Suzan Shahrestani1 and Yonghong He2, (1)UMCES, Solomons, MD, United States, (2)Tsinghua University, Graduate School at Shenzhen, Shenzhen, China
Abstract:
Gelatinous are delicate and transparent by nature, but are conspicuous in many ecosystems when in bloom. Their proliferations are a bothersome and costly nuisance and influencing important food webs and species interactions. More importantly, gelatinous zooplankton respond to climate change rapidly and understanding their upsurge needs information on their recruitment and population dynamics which in turn require their age-structure. However, ageing gelatinous zooplankton is often restricted by the fact that they shrink under unfavorable conditions. In the present study, we examine the potential of using optical coherence tomography (OCT) to age gelatinous zooplankton. OCT is a non-invasive imaging technique that uses light waves to examine 2D or 3D structure of target objects at a resolution of 3-5 µm. We were able to successfully capture both 3D and 2D images of sea nettle muscle fibers. Preliminary results on ctenophores will be discussed. Overall, this non-destructive sampling allows us to scan and capture images of mesoglea from jellyfish cultured in the lab, using the same individual repeatedly through time, documenting its growth which will provide precise measurements to construct an age key that will be applied to gelatinous zooplankton captured in the field. Coupled with information on abundance, we can start to quantify their recruitment timing and success rate.