Organic Carbon Sources and their Transfer in a Gulf of Mexico Coral Reef Ecosystem under River Influence

Chris Parrish1, Laura Carreón-Palau2, Jorge del Ángel-Rodríguez1, Horacio Perez-Espana3 and Sergio Aguiniga-Garcıa4, (1)Memorial University of Newfoundland, St. John's, Canada, (2)Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico, (3)Universidad Veracruzana, Mexico, (4)Centro Interdisciplinario de Ciencias Marinas, Mexico
Abstract:
To assess the degree to which coral reefs in a marine protected area have been influenced by terrestrial and anthropogenic organic carbon inputs we used C and N stable isotopes and lipid biomarkers in the Coral Reef System of Veracruz in the southwest Gulf of Mexico. A C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor revealed the primary producer sources that fuel the coral reef food web. Then lipid classes, FA and sterol biomarkers determined production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, coprostanol determined pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential FA for fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while sea grass non-essential FA are transferred to the entire food web. Sea urchins may be the main consumers of brown macroalgae, while surgeon fish prefer red algae. C and N isotopic values and the C:N ratio suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and sea grass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly. The nearest river to the Reef System was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. We would suggest monitoring δ15N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the Reef System.