Diffusion by Infragravity Stokes Drift Fluctuations

Pieter Smit1, Tim T Janssen1, Thomas H.C. Herbers2 and Zachary Kirshner2, (1)Spoondrift, Half Moon Bay, CA, United States, (2)NorthWest Research Associates, El Granada, CA, United States
Abstract:
The group-scale variability of ocean waves variability drives infragravity Stokes drift fluctuations, which are important for small-scale diffusion of passive tracers (to the order of a few kilometers), and can thus be important for the break-up and dispersion of e.g. oil spills or sewage outflow, and coastal transport in general. The implications of this were first considered theoretically by Herterich and Hasselmann (1982, JPO), who demonstrated that on small scales, wave diffusion can compete with other upper ocean diffusive processes, but their theory has thus far not been extensively validated with field observations.

To investigate drift fluctuations and wave-induced diffusion, we consider the wave-induced dispersion of a cluster of O(10) buoys. The experiment, conducted offshore of San Francisco, uses a cluster of Lagrangian drifters equipped with fast-sampling GPS sensor packages, to accurately resolve both the surface wave motions, and directly measure the Lagrangian dynamics, including surface drift fluctuations. We revisit the Herterich and Hasselmann theory, expand it to include shallow water and variable wave conditions, and compare the theoretical predictions with the new observations.