Linking phytoplankton and bacterioplankton community dynamics to iron-binding ligand production in a microcosm experiment

Shane Lahman Hogle, University of California, San Diego, Scripps Institution of Oceanography, La Jolla, CA, United States, Randelle M Bundy, Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, United States and Katherine Barbeau, University of California San Diego, La Jolla, CA, United States
Abstract:
Several significant lines of evidence implicate heterotrophic bacterioplankton as agents of iron cycling and sources of iron-binding ligands in seawater, but direct and mechanistic linkages have mostly remained elusive. Currently, it is unknown how microbial community composition varies during the course of biogenic particle remineralization and how shifts in community structure are related to sources and sinks of Fe-binding ligands. In order to simulate the rise, decline, and ultimate remineralization of a phytoplankton bloom, we followed the production of different classes of Fe-binding ligands as measured by electrochemical techniques, Fe concentrations, and macronutrient concentrations in a series of iron-amended whole seawater incubations over a period of six days during a California Current Ecosystem Long Term Ecological Research (CCE-LTER) process cruise. At the termination of the experiment phytoplankton communities were similar across iron treatments, but high iron conditions generated greater phytoplankton biomass and increased nutrient drawdown suggesting that phytoplankton communities were in different phases of bloom development. Strikingly, L1 ligands akin to siderophores in binding strength were only observed in high iron treatments implicating phytoplankton bloom phase as an important control. Using high-throughput 16S rRNA gene surveys, we observed that the abundance of transiently dominant copiotroph bacteria were strongly correlated with L1 concentrations. However, incubations with similar L1 concentrations and binding strengths produced distinct copiotroph community profiles dominated by a few strains. We suggest that phytoplankton bloom maturity influences algal-associated heterotrophic community succession, and that L1 production is either directly or indirectly tied to the appearance and eventual dominance of rarely abundant copiotroph bacterial strains.