Extreme Sea Level Rise Event Linked to 2009-10 AMOC Downturn

Jianjun Yin, University of Arizona, Tucson, AZ, United States
Abstract:
The coastal sea levels along the Northeast Coast of North America show significant year-to-year fluctuations in a general upward trend. Our analysis of long-term tide gauge records along the North American east coast identified an extreme sea-level rise (SLR) event during 2009–2010. Within this relatively brief two-year period, coastal sea levels north of New York City jumped by ~ 100 mm. This magnitude of inter-annual SLR is unprecedented in the century-long tide gauge records, with statistical methods suggesting that it was a 1-in-850 year event.

We show that this extreme SLR event was a combined effect of two physical factors. First, it was partly due to an observed 30% downturn of the Atlantic meridional overturning circulation (AMOC) during 2009-2010. This AMOC slowdown caused a significant decline of the dynamic sea level gradient across the Gulf Stream and North Atlantic Current, thereby imparting a rise in coastal sea level. The second contributing factor to the extreme SLR event was due to a significant negative North Atlantic Oscillation (NAO) index. The associated easterly or northeasterly wind anomalies acted to push ocean waters towards the Northeast Coast through the Ekman transport, resulting in further rise in coastal sea levels. Sea level pressure anomalies also contributed to the extreme SLR event through the inverse barometer effect.

To project future extreme sea levels along the east coast of North America during the 21st century, we make use of a suite of climate/Earth system models developed at GFDL and other modeling centers. These models included typical CMIP5-class models, as well as the newer climate models GFDL CM2.5 and CM2.6 with eddying oceans. In response to the increase in greenhouse-gas concentrations, each of these models show a reduction in the AMOC. Given the observed connection between AMOC reduction and extreme coastal sea levels, the models thus project an increase in extreme SLR frequency on interannual time scales along the Northeast Coast of North America.