Metabolic Energy Demand Is Not Increased during Initial Shell Formation of Bivalves Exposed to Aragonite Undersaturation

Francis Pan, Christina Frieder, Scott Applebaum and Donal T. Manahan, University of Southern California, Biological Sciences, Los Angeles, CA, United States
The Pacific oyster, Crassostrea gigas, is a major commercial species in global aquaculture. Ocean acidification is having a negative effect on larval production of this species, so the mechanisms of this impact are of considerable interest. Formation of new shell in C. gigas during the first 2-days post-fertilization results in a rapid six-fold increase in total mass. This period of early development has high sensitivity to changes in carbonate chemistry, in particular aragonite saturation state (Ω). An elevated energy cost for calcification at low Ω is often invoked as a mechanism. In this study, we characterized the developmental progression of first shell formation, total metabolic expenditure, and underlying biochemical processes of energy allocation during early development of C. gigas, under control ( >> 1) and undersaturated conditions ( < 1). While undersaturated conditions delayed the onset of calcification and resulted in decreased shell mass, there was no change in total metabolic energy demand. Furthermore, partitioning of total metabolic energy showed no major re-allocation of ATP to protein synthesis or ion pump activity (Na+, K+-ATPase) between the two treatments. We conclude that early development to the shelled-veliger larval stage does not require more energy at undersaturation. This finding helps constrain potential mechanisms of larval sensitivity to ocean acidification and narrows the focus for possible mitigation strategies for oyster aquaculture production.