Colloidal Pumping as a Removal Process of Dissolved Iron: a Model Study
Abstract:
This study aims to build a new iron scavenging parameterization based on “colloidal pumping”. A mechanistic model to calculate a coupled adsorption/coagulation process is described in Burd et al. (2000) and is applied to dTh scavenging. We firstly conducted an experiment using their model to highlight an importance of “colloidal pumping”. In this experiment, we suppose an open-ocean box having a typical 238U concentration that produces 234Th by radioactive decay. Colloidal particles (< 1 μm) are continuously added to the box, and the model is run to be a steady state. Increase in colloidal particles results in colloidal coagulation and thus formation of particles. Simulated outgoing 234Th fluxes are mainly seen in diameters larger than 1 μm where the gravitational settling is significant. We then conducted an experiment without adsorption of dTh to colloids, namely turn off “colloidal pumping”. As dTh is removed only by adsorption directly to large aggregates, removal efficiency is much decreased and the simulated dTh concentration becomes several times higher. The result suggests that ignoring “colloidal pumping” results in overestimation of dissolved metals in ocean models.