Bacterioplankton Populations within the Oxygen Minimum Zone of the Sargasso Sea

Gabriel Schuler, Saint Francis University, Biology, Loretto, PA, United States; Bermuda Institute of Ocean Sciences, Bermuda, Rachel Jane Parsons, Bermuda Institute for Ocean Sciences, BIOS, St. George's, Bermuda and Rodney J Johnson, Bermuda Institute of Ocean Sciences, St.George's, Bermuda
Abstract:
Oxygen minimum zones are present throughout the world’s oceans, and occur at depths between 200 to 1000m. Heterotrophic bacteria reduce the dissolved oxygen within this layer through respiration, while metabolizing falling particles. This report studied the bacterioplankton in the oxygen minimum zone at the BATS (Bermuda Atlantic Times-series Study) site from July 2014 until November 2014. Total bacterioplankton populations were enumerated through direct counts. In the transitional zone (400m-800m) of the oxygen minimum zone, a secondary bacterioplankton peak formed. This study used FISH (Fluorescent in situ hybridization) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescent in situ hybridization) to enumerate specific bacterial and archaeal taxa. Crenarchaeota (including Thaumarchaeota) increased in abundance within the upper oxycline. Thaumarchaeota have the ammonia monooxygenase gene that oxidizes ammonium into nitrite in low oxygen conditions. Amplification of the amoA gene confirmed that ammonia oxidizing archaea (AOA) were present within the OMZ. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community structure showed high similarity based depth zones (0-80m, 160-600m, and 800-4500m). Niskin experiments determined that water collected at 800m had an exponential increase in bacterioplankton over time. While experimental design did not allow for oxygen levels to be maintained, the bacterioplankton community was predominantly bacteria with eubacteria positive cells making up 89.3% of the of the total bacterioplankton community by day 34. Improvements to the experimental design are required to determine which specific bacterial taxa caused this increase at 800m. This study suggests that there are factors other than oxygen influencing bacterioplankton populations at the BATS site, and more analysis is needed once the BATS data is available to determine the key drivers of bacterioplankton dynamics within the BATS OMZ.