Exploring confidence and uncertainty in projections of potential marine ecosystem stressors under climate change
Abstract:
We show that the uncertainty in century-scale global and regional surface pH projections is dominated by scenario uncertainty, highlighting the critical importance of policy decisions on carbon emissions. In contrast, uncertainty in century-scale sea surface temperature projections in polar regions, oxygen levels in low oxygen waters, and regional nutrient availability is dominated by model uncertainty, underscoring that overcoming deficiencies in scientific understanding and improved process representation in Earth System Models are critical for making more robust predictions. For smaller spatial and temporal scales, uncertainty associated with internal variability also constitutes an important source of uncertainty, suggesting irreducible uncertainty inherent in these projections. We also show that changes in the combined multiple ecosystem drivers emerges from the noise in 44% of the ocean in the next decade and in 57% of the ocean by the end of the century following a high carbon emissions scenario. Changes in pH and sea surface temperature can be reduced substantially and rapidly by the end of 21st century with aggressive carbon emission mitigation, but only marginally for oxygen and net primary productivity. Implications for downscaling of Earth system model output and for projecting global and regional marine fisheries catch will be discussed.