Describing River Plume Interactions in the Northern Adriatic Sea Using High Resolution Satellite Turbidity And Sea Surface Temperature Observations

Vittorio e Brando1, Federica Braga2, Luca Zaggia3 and Sandro Carniel2, (1)CNR-IREA, Milano, Italy, (2)CNR ISMAR, Venice, Italy, (3)CNR Institute for Marine Science, Venice, Italy
Abstract:
Sea surface temperature (SST) and turbidity (T) derived from Landsat-8 (L8) imagery were used to characterize river plumes in the Northern Adriatic Sea (NAS). Sea surface salinity (SSS) from an operational coupled ocean-wave model supported the interpretation of the plumes interaction with the receiving waters and among them.

In this study we used L8 OLI and TIRS imagery of 19 November 2014 capturing a significant freshwater inflow into the NAS for mapping both T and SST at 30 meters resolution. Sharp fronts in T and SST delimited each single river plume. The isotherms and turbidity isolines coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters.

Overall, there was a good agreement of the SSS, T, and SST fields at the mesoscale delineation of the major river plumes. Landsat-8 30m resolution enabled the identification of smaller plume structures and the description at small scale and sub-mesoscale of the plume dynamical regions for all plume structures, as well as their interactions in the NAS.

Although this study presents data captured with a sensor having a revisiting time of 16 days, we expect that with the recent launch of ESA’s Sentinel 2A and the forthcoming launch of Sentinel 2B the temporal resolution will increase reaching almost the 1-3 days revisit time normally associated with Ocean Colour Radiometry (OCR). Combined with their radiometric resolution similar to OCR missions, these developments will thus offer an opportunity to also describe the temporal evolution of plume structures at the sub-mesoscale.