The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup
The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup
Abstract:
Aquatic vegetation in the coastal zone (e.g. mangrove trees) attenuates wave energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) waves, vegetation may also affect infragravity-band (IG) waves and the wave-induced water level setup (in short: wave setup). Currently, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG waves as well as the effect on the wave setup, in two modes: the sea-swell wave phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a wave shape model was implemented to estimate the wave phase and to capture the intra-wave scale effect of emergent vegetation and nonlinear waves on the wave setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG waves as well as the effect on the wave-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the wave shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed wave setup with and without vegetation. It was found that the reduction is wave setup is strongly related to the location of vegetation relative to the wave breaking point, and that the wave setup is lower for milder slopes.
The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the coastal protection function of vegetation.