Surface Current Skill Assessment of Global and Regional forecast models.

Arthur Addoms Allen, US Coast Guard, Office of Search and Rescue, New London, CT, United States
Abstract:
The U.S. Coast Guard has been using SAROPS since January 2007 at all fifty of its operational centers to plan search and rescue missions. SAROPS relies on an Environmental Data Server (EDS) that integrates global, national, and regional ocean and meteorological observation and forecast data. The server manages spatial and temporal aggregation of hindcast, nowcast, and forecast data so the SAROPS controller has the best available data for search planning. The EDS harvests a wide range of global and regional forecasts and data, including NOAA NCEP’s global HYCOM model (RTOFS), the U.S. Navy’s Global HYCOM model, the 5 NOAA NOS Great Lakes models and a suite of other reginal forecasts from NOS and IOOS Regional Associations. The EDS also integrates surface drifter data as the U.S. Coast Guard regularly deploys Self-Locating Datum Marker Buoys (SLDMBs) during SAR cases and a significant set of drifter data has been collected and the archive continues to grow. This data is critically useful during real-time SAR planning, but also represents a valuable scientific dataset for analyzing surface currents. In 2014, a new initiative was started by the U.S. Coast Guard to evaluate the skill of the various models to support the decision making process during search and rescue planning. This analysis falls into 2 categories: historical analysis of drifter tracks and model predictions to provide skill assessment of models in different regions and real-time analysis of models and drifter tracks during a SAR incident. The EDS, using Liu and Wiesberg’s (2014) autonomously determines surface skill measurements of the co-located models’ simulated surface trajectories versus the actual drift of the SLDMBs (CODE/Davis style surface drifters GPS positioned at 30min intervals). Surface skill measurements are archived in a database and are user retrieval by lat/long/time cubes. This paper will focus on the comparison of models from in the period from 23 August to 21 September 2015. Surface Skill was determined for the following regions: California Coast, Gulf of Mexico, South and Mid Atlantic Bights. Skill was determined for the two version of the NCEP Global RTOFS, Navy’s Global HYCOM model, and where appropriated the local regional models