Response of Holobiont Compartments to Salinity Changes Indicates Osmoregulation of Scleractinian Corals

Till Roethig, Michael A Ochsenkuehn, Riaan van der Merwe, Anna Roik and Christian R Voolstra, King Abdullah University of Science and Technology, BESE/RSRC, Thuwal, Saudi Arabia
Abstract:
Environmental change is expected to render the oceans more saline, but scleractinian corals are assumed to be stenohaline osmoconformers. Yet, some corals are able to tolerate salinities up to 50 PSU, but we know little about the mechanisms involved. Previous studies have exclusively addressed the coral host and their algal symbionts (Symbiodinium) in hospite. To disentangle the role of all compartments of the coral holobiont we assessed the response of the coral host, its symbiont algae in the genus Symbiodinium (in hospite and in culture), and the associated bacterial community to strongly increased salinities. In a short-term incubation (4h) we could measure decreases in the calcification rate of the coral host and the photosynthetic performance of its algal symbiont in hospite. In a long-term (29 days) setup we found no differences in the photosynthetic efficiency but a major restructuring of the bacterial communities. In four Symbiodinium cultures we identified changes in photosynthetic yields and osmolytes composition upon short-term salinity exposure (≤24h). Our results show a short-term reaction of coral host and Symbiodinium to strongly increased salinities. However, lack of an apparent physiological long-term response indicates an acclimation process that is accompanied by a microbiome community shift towards a microbiome that potentially supports increased osmolyte production. Furthermore, changes in osmolytes composition in the Symbiodinium cultures display conserved osmoregulatory processes that may translate to osmoregulation for the coral holobiont.