Exploring relationships of calcification rate with respiration rate and predator cue presence in juvenile Crassostrea virginica 

Melissa McCutcheon and Xinping Hu, Texas A&M Univ Corpus Christi, Corpus Christi, TX, United States
The eastern oyster (Crassostrea virginica) is a biologically and economically important calcifier that has been experiencing a global population decline due to multiple stressors. The process of biomineralization is essential in the growth and predator defense of oysters. Several studies investigating morphological and mechanical shell properties have noted a phenotypic plasticity in response to predator presence. We present the first study that attempts to detect an alteration in the calcification rate of juvenile C. virginica as well as measure respiration rates in the presence and absence of predator exudates. An alkalinity anomaly technique was used to quantify calcification and respiration rates of oysters exposed to blue crab or mud crab cues or a no cue control condition. No significant differences in calcification rate were detected between predator and control treatments. However, the linear relationship between calcification and respiration rates differed between treatments. This changing relationship is not fully understood and warrants further investigation. In addition, this study also revealed our experimental oysters maintained calcification rates comparable to literature values while respiration rates were an order of magnitude lower than previously reported levels.

Future direction for this research involves inclusion of acidification treatments. Any environmental factors (including predator presence) that may on their own or in conjunction with estuarine acidification alter calcification (or respiration) rates will impact the local to regional carbon cycle as well as oyster fitness and consequent future population dynamics.