Spatial and Seasonal Calcification in Corals and Calcareous Crusts in a Naturally Warm Coral Reef Region

Anna Roik1, Cornelia Roder1, Till Roethig2 and Christian R Voolstra2, (1)King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia, (2)King Abdullah University of Science and Technology, BESE/RSRC, Thuwal, Saudi Arabia
The Red Sea harbors highly diverse and structurally complex coral reefs and is of interest for ocean warming studies. In the central and southern part, water temperatures rise above 30°C during summer, constituting one of the warmest coral reef environments worldwide. Additionally, seasonal variability of temperatures allows studying changes of environmental conditions and their effects on coral reef processes. To explore the influence of these warm and seasonally variable habitats on reef calcification, we measured in situ calcification of primary and secondary reef-builders in the central Red Sea. We collected calcification rates on the major habitat-forming coral genera Porites, Acropora, and Pocillopora, and also on calcareous crusts (CC). The study comprised forereef and backreef environments of three reefs along a cross-shelf gradient assessed over four seasons of the year. Calcification patterns of all coral genera were consistent across the shelf and highest in spring. In contrast to the corals, CC calcification strongly increased with distance from shore, but varied to a lesser extend over the seasons demonstrating lower calcification rates during spring and summer. Interestingly, reef calcification rates in the central Red Sea were on average in the range of data reported from the Caribbean and Indo-Pacific. For Acropora, annual average calcification rates were even at the lower end in comparison to studies from other locations. While coral calcification maxima typically have been observed during summer in many reef locations worldwide, we observed calcification maxima during spring in the central Red Sea indicating that summer temperatures may exceed the optima of reef calcifiers. Our study provides a baseline of calcification data for the region and serves as a foundation for comparative efforts to quantify the impact of future environmental change.