Subpolar North Atlantic glider observations for OSNAP

Chun Zhou1, Benjamin Hodges2, Amy S Bower2, Jiayan Yang2 and Xiaopei Lin1, (1)Ocean University of China, Qingdao, China, (2)Woods Hole Oceanographic Institution, Woods Hole, MA, United States
Abstract:
OSNAP is an international program designed to provide a continuous record of the full-water-column, trans-basin fluxes of heat, mass, and freshwater in the subpolar North Atlantic. The observational efforts of this program are focused largely along lines connecting Labrador to Greenland, and Greenland to Scotland. The OSNAP experimental plan includes continuous sampling by Slocum G2 gliders along the latter (easternmost) of these two sections, specifically across the northeastward-flowing North Atlantic Current in the Iceland Basin. The glider observations, a collaboration between the Ocean University of China and Woods Hole Oceanographic Institution, provide higher spatial resolution of water properties than is possible from moorings alone. These observations commenced in June 2015 with a mission to fly back and forth along a section between two OSNAP moorings, profiling from the surface to 1000-m depth. As of September 2015, five sections (including over 240 profiles) have been recorded. As expected, the data indicates energetic intraseasonal variability at smaller scales than can be captured by the OSNAP mooring array. We are investigating how this variability may impact calculated fluxes of heat, mass, and freshwater. The glider repeatedly crossed a cyclonic eddy between the two moorings, enabling study of fine thermohaline structure during the development and dissipation of mesoscale eddies in the subpolar North Atlantic. With additional sensors measuring fluorescence, dissolved oxygen, nitrate, and multispectral light, the dataset also has the potential to significantly advance our understanding of the biogeochemical processes of mesoscale and submesoscale eddies in the subpolar North Atlantic.