E/V Nautilus Detection of Isolated Features in the Eastern Pacific Ocean: Newly Discovered Calderas and Methane Seeps
E/V Nautilus Detection of Isolated Features in the Eastern Pacific Ocean: Newly Discovered Calderas and Methane Seeps
Abstract:
The E/V Nautilus mapped over 80,000 km2 of the seafloor in the Gulf of Mexico and Eastern Pacific Ocean during its 2015 expedition. The Nautilus used its Kongsberg EM302 multibeam system to map the seafloor prior to remotely operated vehicle (ROV) dives, both for scientific purposes (site selection) and navigational safety. The Nautilus also routinely maps during transits to identify previously un-mapped or unresolved seafloor features. During its transit from the Galapagos Islands to the California Borderland, the Nautilus mapped 44,695 km2 of seafloor. Isolated features on the seafloor and in the water-column, such as calderas and methane seeps, were detected during this data collection effort. Operating at a frequency of 30 kHz in waters ranging from 1000-5500 m, we discovered caldera features off the coast of Central America. Since seamounts are known hotspots of biodiversity, locating new ones may enrich our understanding of seamounts as “stepping stones” for species distribution and ocean current pathways. Satellite altimetry datasets prior to this data either did not discern these calderas or recognized the presence of a bathymetric high without great detail. This new multibeam bathymetry data, gridded at 50 m, gives a precise look at these seamounts that range in elevation from 350 to 1400 m from abyssal depth. The largest of the calderas is circular in shape and is ~10,000 m in length and ~5,000 m in width, with a distinct circular depression at the center of its highest point, 1,400 m above the surrounding abyssal depth. In the California Borderland region, located between San Diego and Los Angeles, four new seeps were discovered in water depths from 400-1,020 m. ROV exploration of these seeps revealed vent communities. Altogether, these discoveries reinforce how little we know about the global ocean, indicate the presence of isolated deep-sea ecosystems that support biologically diverse communities, and will impact our understanding of seafloor habitat.