Spatial and Temporal Dynamics of Mixotrophic Protists Within a Protected Glacial Lake

Sarah Bess DeVaul and Robert W. Sanders, Temple University, Department of Biology, Philadelphia, PA, United States
Abstract:
Bacterivorous protists are vital components of the aquatic food web as prey for zooplankton and top-down regulators of bacteria. Many bacterivores utilize mixotrophic nutrition that combines photosynthesis with ingestion of particulate matter. Mixotrophic protists are capable of substantial rates of bacterivory – often greater than co-occurring heterotrophic flagellates. It has been argued that mixotrophs may gain a competitive advantage in natural systems due to their ability to utilize photosynthesis during periods of reduced particulate food or phagotrophy during periods of decreased irradiance. A central goal of ecological study has been to understand and ultimately predict the composition of communities in response to varying environmental conditions. The objectives of this study were to determine seasonal abundances and bacterial ingestion rates of heterotrophic, phototrophic and mixotrophic nanoflagellates (hereafter referred to as HNAN, PNAN and MNAN) and identify abiotic drivers that influence spatial and temporal dynamics of these functional groups. Water samples were collected approximately monthly over a 1.5 year period from Lake Lacawac, a 13,000 year old lake with a protected watershed. Trends in MNAN abundance were related to seasonal patterns of thermal stratification and varied with depth. Maximum abundance occurred in the summer epilimnion. Although HNAN abundance tended to be greater than that of MNAN, the latter generally had a greater grazer impact on bacterial biomass within the epilimnion. During the study period, MNAN removed a maximum of 75% of the bacterial biomass daily in the metalimnion. Mixotroph abundance and grazing impact tended to decrease in deeper waters, and was nearly absent in the anaerobic hypolimnion in late summer and early autumn.