Assessing the Diversity of Halimeda spp. on Pulley Ridge Mesophotic Reefs
Abstract:
It has been hypothesized the mesophotic reefs may serve as refugia for shallow water taxa impacted by climate change and other anthropogenic stressors. To test this hypothesis, in 2012-2015, the mesophotic reefs of Pulley Ridge and Dry Tortugas were sampled to assess genetic connectivity to the shallow water reefs of the Florida Keys. A diverse array of Halimeda species were represented on Pulley Ridge. Halimeda species are known to be difficult to identify and delineate morphologically and the taxonomy of Halimeda species has been revised several times based on molecular data. Thus, before connectivity of mesophotic Halimeda to shallow populations can be assessed, our first goal is to determine whether there is overlap of any of the Halimeda species between the mesophotic and shallow reefs, and then to determine if any of the species are present in sufficient abundance for population genetics.
We sequenced portions of two chloroplast genes commonly used for algal phylogenetics and barcoding, tufA and rbcL, for at least 5 individuals of each morphotype collected on Dry Tortugas and the Pulley Ridge mesophotic reefs. Preliminary results suggest that Halimeda tuna, the species previously reported as the dominant Halimeda species on Pulley Ridge, was relatively uncommon. Morphological results and comparison of initial genetic results to sequences in GenBank suggest that H. goreaui is abundant at the Dry Tortugas site and H. fragilis, H. copiosa and H. discoidea are common on Pulley Ridge, indicating greater Halimeda diversity in the mesophotic reef system than previously documented.