Observations of Morphodynamics During a Winter Storm at the Mouth of the Misa River

Joe Calantoni1, Alexandru Sheremet2, Maurizio Brocchini3 and Matteo Postacchini3, (1)U.S. Naval Research Laboratory, Stennis Space Center, DC, United States, (2)University of Florida, Engineering School of Sustainable Infrastructure & Environment, Gainesville, FL, United States, (3)Polytechnic University of Marche, Department of Civil and Building Engineering, and Architecture, Ancona, Italy
Abstract:
The shallow mouth of the Misa River, Senigallia, Italy is exposed to wind and waves from the Adriatic Sea and is vulnerable to morphodynamic activity during even moderate storm events. Sediment loads and transport patterns may be strongly influenced by the confluence of fine cohesive suspended sediment contained in the discharge from the river mixing with coarser sandy material stirred up by waves impinging on the river mouth. Observations of rapid changes in bed elevation along a transect extending offshore of the river mouth were made using a combination of instruments deployed from 23-27 January 2014 at two locations in roughly 5 m water depth and 6 m water depth. Additionally, an up looking ADCP was located farther offshore in approximately 7 m water depth. The deposited sediment quickly consolidated into a hardened mixture of sand, mud, and venerids over the base of our instrument frames. At the 5 m water depth location over 0.4 m of deposition was observed roughly during a 6-hour period. Similarly, at the 6 m water depth location nearly 0.2 m of deposition was observed roughly over a 6-hour period with approximately a two-hour time lag. The onset of deposition was concurrent with a change in direction of the mean currents at both locations and a change in direction of wave skewness observed at the 5 m water depth location. We hypothesize that sandbar migration was responsible for the observed changes in bed elevation at both locations. Our analysis will focus on sediment transport modeling to explain rates of deposition and time lag of the observed changes in bed elevation at the 5 m and 6 m water depth locations.