Effect of Mineral Dust on Ocean Color Retrievals From Space: A Radiative Transfer Simulation Study

Ziauddin Ahmad1,2 and Bryan A Franz2, (1)Science and Data Systems, Inc., Siver Spring, MD, United States, (2)NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
In this paper we examine the effect of mineral aerosols (dust) on the retrieval of ocean colors from space. Mineral aerosols are one of the major components of all aerosols found in the earth’s atmosphere. These are mainly soil particles that originate from arid and semiarid regions of the world and are blown away by winds thousands of kilometers away from their source regions. The radii of these aerosols are between 0.1 and 1.0 μm and their resident time in the atmosphere is about 21 days. The primary focus of this paper is to estimate the remote sensing reflectance (Rrs) errors in the presence of absorbing aerosols over ocean. The present study is based on radiative transfer (RT) simulations, and it is particularly relevant to ocean color retrievals from sensors like MODIS, MERIS, VIIRS, and the future PACE/OCI. In the simulations, we have used mineralogy to determine the spectral dependence of aerosol refractive index, and modeled the aerosols to represent dust over Cape Verde (Sal Island). As a part of this study, we will present the results for retrieved aerosol optical thickness (τ), Angstrom exponent (α), and remote sensing reflectance (Rrs) and compare them with similar results for non-absorbing aerosols. In addition, we will show how aerosol layer height affects the ocean color retrievals.