Metabolic Potential of Microbial Genomes Reconstructed from a Deep-Sea Oligotrophic Sediment Metagenome

Benjamin J Tully, University of Southern California, Center for Dark Energy Biosphere Investigations, Los Angeles, CA, United States, Julie A Huber, Marine Biological Laboratory, Woods Hole, MA, United States and John F Heidelberg, University of Southern California, Marine Environmental Biology, Los Angeles, CA, United States
Abstract:
The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration and primary productivity in the global oceans, making it one of the most oligotrophic environments on earth. As a direct result of the low-standing biomass in surface waters, deep-sea sediments are thin and contain small amount of labile organic carbon. It was recently shown that the sediment column within the SPG is fully oxic through to the underlying basalt basement and may be representative of 9-37% of the global marine environment. In addition, it appears that approximately 50% of the total organic carbon is removed from the oligotrophic sediments within the first 20 centimeters beneath the sea floor (cmbsf). To understand the microbial processes that contribute to the removal of the labile organic matter, metagenomic sequencing and analysis was carried out on a sample of sediment collected from 0-5 cmbsf from SPG site 10 (U1369). Analysis of 9 partially reconstructed environmental genomes revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper ocean organisms, with deep branches within the Alpha- and Gammaproteobacteria, Nitrospirae, Nitrospina, the phylum NC10, and several unique phylogenetic groups. Within these partially complete genomes there is evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to the nitrification. Additionally, despite low sedimentation and hypothesized energy-limitation, members of the SPG microbial community had motility and chemotactic genes and possessed mechanisms for the utilization of high molecular weight organic matter, including exoproteases and peptide specific membrane transporters. Simultaneously, the SPG genomes showed a limited potential for the degradation of recalcitrant carbon compounds. Finally, the presence of putative genes with functions involved with denitrification and the consumption of C1 compounds suggest that there may be microenvironments in the surface sediments were microbes can deplete oxygen concentrations to hypoxic/anoxic levels. This study represents an important first analysis in understanding how microorganisms in oligotrophic sediments impact deep-sea carbon transformations.