High Resolution Time Series of Plankton Communities: From Early Warning of Harmful Blooms to Sentinels of Climate Change

Anya M Waite1, Lisa Campbell2 and Robert J. Olson1, (1)Woods Hole Oceanographic Institution, Woods Hole, MA, United States, (2)Texas A & M University, Oceanography, College Station, TX, United States
Abstract:
The combination of ocean observatory infrastructure and automated submersible flow cytometry provides an unprecedented capability for sustained high resolution time series of plankton, including taxa that are harmful or early indicators of ecosystem response to environmental change. On-going time series produced with the FlowCytobot series of instruments document important ways this challenge is already being met for phytoplankton and microzooplankton. FlowCytobot and Imaging FlowCytobot use a combination of laser-based scattering and fluorescence measurements and video imaging of individual particles to enumerate and characterize cells ranging from picocyanobacteria to large chaining-forming diatoms. Over a decade of observations at the Martha’s Vineyard Coastal Observatory (MVCO), a cabled facility on the New England Shelf, have been compiled from repeated instrument deployments, typically 6 months or longer in duration. These multi-year high resolution (hourly to daily) time series are providing new insights into dynamics of community structure such as blooms, seasonality, and multi-year trends linked to regional climate-related variables. Similar observations in Texas coastal waters at the Texas Observatory for Algal Succession Time series (TOAST) have repeatedly provided early warning of harmful algal bloom events that threaten human and ecosystem health. As coastal ocean observing systems mature and expand, the continued integration of these type of detailed observations of the plankton will provide unparalleled information about variability and patterns of change at the base of the marine food webs, with direct implications for informed ecosystem-based management.