Numerical Investigations of Subduction of Eighteen Degree Water in the Subtropical Northwest Atlantic Ocean
Numerical Investigations of Subduction of Eighteen Degree Water in the Subtropical Northwest Atlantic Ocean
Abstract:
Mode waters are upper-ocean water masses with nearly uniform water properties over a thickness of a few hundred meters. Subduction of mode waters plays an important role in changing atmospheric and oceanic long-term variability because they store “memory” of wintertime air-sea interaction. In this study, we investigated dynamic processes associated with subduction of the Eighteen Degree Water (EDW, the principal mode water) in the subtropical Northwest Atlantic during January to June 2007. Numerical simulations of the temporal and spatial evolutions of EDW were performed using both uncoupled (ocean only) and air-sea coupled configurations and results were contrasted. We find the coupled simulation produced deeper mixed layer depth, stronger eddy kinetic energy, and larger subduction areas than their counterparts in the uncoupled ocean simulation. In both configurations, mesoscale eddies enhance the total subduction and eddy-induced subduction has the same order as the mean component. Resolving strong air-sea coupling and mesoscale eddies is therefore important for understanding EDW dynamics.