Drawing the line on the sand

Rosh Ranasinghe1,2, Ruben Jongejan3, David Wainwright4 and David Patrick Callaghan4, (1)UNESCO-IHE, Delft, Netherlands, (2)Deltares, Harbour, Coastal and Offshore Engineering, Delft, Netherlands, (3)JongejanRMC, Delft, Netherlands, (4)University of Queensland, Brisbane, Australia
Abstract:
Up to 70% of the world's sandy coastlines are eroding, resulting in gradual and continuous coastline recession. The rate of coastline recession is likely to increase due to the projected impacts of climate change on mean sea levels, offshore wave climate and storm surges. At the same time, rapid development in the world’s coastal zones continues to increase potential damages, while often reducing the resilience of coastal systems. The risks associated with coastline recession are thus likely to increase over the coming decades, unless effective risk management plans are put in place.

Land-use restrictions are a key component of coastal zone risk management plans. These involve the use of coastal setback lines which are mainly established by linearly adding the impacts of storms, recession due to sea level rise, and ambient long term trends in shoreline evolution. This approach does not differentiate between uncertainties that develop differently over time, nor takes into account the value and lifetime of property developments. Both shortcomings could entail considerable social cost.

For balancing risk and reward, probabilistic estimates of coastline recession are a pre-requisite. Yet the presently adopted deterministic methods for establishing setback lines are unable to provide such estimates. Here, we present a quantitative risk analysis (QRA) model, underpinned by a multi-scale, physics based coastal recession model capable of providing time-dependent risk estimates. The modelling approach presented enables the determination of setback lines in terms of exceedance probabilities, a quantity that directly feeds into risk evaluations and economic optimizations. As a demonstration, the risk-informed approach is applied to Narrabeen beach, Sydney, Australia.