Using ATTO dyes to probe bacterial interactions with the marine diatom Pseudo-nitzschia.
Sanjin Mehic, University of California Santa Cruz, Microbiology & Environmental Toxicology, Santa Cruz, CA, United States and Marilou Sison-Mangus, University of California Santa Cruz, Santa Cruz, CA, United States
Abstract:
Pseudo-nitzschia blooms are known to be highly toxic and detrimental to wildlife. The neurotoxin produced by the algae can ripple through the entire food web creating a direct impact on oceanic life and human-related industries. With coastal blooms increasing in both size and duration in recent years, it is crucial that we uncover more microbial interactions that may affect the toxicity of these blooms. Current harmful algal bloom studies have shown that different bacterial consortia can have a great impact
Pseudo-nitzschia physiology. More specifically, research suggests that bacteria affect both growth rates and domoic acid concentrations of laboratory grown cultures. However, these studies do not explore the attachment patterns of these bacteria with the diatom. Bacterial attachment may dictate the different types of interactions between bacteria and the diatoms, a trait that is largely unexplored in the symbiotic interactions between the two organisms.
In this study, we seek to identify direct and indirect interactions between four bacteria taxa from different phyla and three different species of Pseudo-nitzschia. Our preliminary scanning electron microscopy and DAPI staining experiments hint at distinct differences in attachment among bacterial taxa. To explore this work further, we aim to employ ATTO dyes and epifluorescent microscopy on both binary and multiple cultures to visualize patterns in attachment. By utilizing ATTO dyes with distinct wavelength emissions, we can perform a series experiment that highlights the interaction between bacteria and diatoms, without inserting a fluorescent reporter gene in the bacteria. Multiple cultures will be used to identify possible cooperative or negative interactive traits between bacteria that can affect diatom host physiology. Implications on both phytoplankton physiology and nutrient cycling will be subsequently discussed.