Small swimmers and sinkers structure the microenvironment by deforming ambient chemical gradients

Bryce Inman, Scripps Institution of Oceanography, La Jolla, CA, United States, Peter J. S. Franks, University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, United States and Carlos Torres, Universidad Autonoma de Baja California, Instituto de Investigaciones Oceanologicas, Ensenada, Mexico
Abstract:
Chemical gradients in the microscale environment determine the rates of fundamental planktonic processes such as signaling and sensing, grazing, predation, mating, infection, nutrient uptake, and primary production. We show that bodies swimming or sinking at low Reynolds number can deform and intensify ambient scalar gradients on the order of 10-1000 times. Over time, this restructuring of the microenvironment in the wake of a moving particle results in elevated diffusive fluxes of ecologically relevant tracers. We use diffusive Stokes flow to model the time evolution of planes of tracer particles that represent a gradient being deformed by a sinking sphere. Ultimately, the degree of gradient intensification and the corresponding diffusive flux enhancement depend on how far a moving body deforms a plane of tracer before it punches through. We derive a scaling for this distance, Ldef, as a function of the Péclet number and describe its importance in the microscale planktonic environment. We then test the modeled gradient deformation, diffusive flux enhancement, and Ldef using an experimental tank apparatus in which the marine copepod, Calanus pacificus, is induced to swim through a layer of tracer dye. We show that the gradient deformation due to the copepod swimming can enhance the apparent tracer diffusivity by 500% over 10 minutes, drawing the tracer out into centimeters-long tendrils. These swimming-induced gradient deformations may be an important source of structure in the microscale environment of the plankton.