The Influence of Mean Trophic Level on Biomass and Production in Marine Ecosystems

ABSTRACT WITHDRAWN

Abstract:
The oceans have faced rapid removal of top predators causing a reduction in the mean trophic level of many marine ecosystems due to fishing down the food web. However, estimating the pre-exploitation biomass of the ocean has been difficult. Historical population sizes have been estimated using population dynamics models, archaeological or historical records, fisheries data, living memory, ecological monitoring data, genetics, and metabolic theory. In this talk, we expand on the use of metabolic theory by including complex trophic webs to estimate pre-exploitation levels of marine biomass. Our results suggest that historical marine biomass could be as much as 10 times higher than current estimates and that the total carrying capacity of the ocean is sensitive to mean trophic level and trophic web complexity. We further show that the production levels needed to support the added biomass are possible due to biomass accumulation and predator-prey overlap in regions such as fronts. These results have important implications for marine biogeochemical cycling, fisheries management, and conservation efforts.