Characterization of the Nova Scotia Coastally-Trapped Current and Monitoring of the Associated Density Front Using Underwater Gliders

Mathieu Dever1, David Hebert2, Blair J W Greenan3 and Jinyu Sheng1, (1)Dalhousie University, Oceanography, Halifax, NS, Canada, (2)Department of fisheries and oceans, Bedford Institute of Oceanography, Dartmouth, NS, Canada, (3)Bedford Institute of Oceanography, Dartmouth, NS, Canada
Abstract:
Repeated glider transects across the Scotian Shelf, near Halifax, Nova Scotia, Canada, completed between 2011 and 2015 provide a dataset with high temporal and spatial resolutions. This new dataset is used to characterize the seasonal variability of the Nova Scotia Current (NSC): a southwestward, coastally-trapped, alongshore current flowing from the Gulf of St. Lawrence to the Gulf of Maine. Alongshore currents are estimated by scaling the geostrophic flow, derived from the density field, with the drift experienced by the glider during each dives. The results are compared to concurrent ADCP observations to assess the reliability of the technique and then used to characterize the alongshore circulation across the Halifax Line. It demonstrates that most of the alongshore transport is associated with the density front separating the low-density NSC from denser shelf water. An automated algorithm is then developed to monitor the major characteristics of the density front (e.g. width, frontal depth, density gradient). We find that the persistent summer stratification explains the lag observed between the seasonal pulse of buoyant water coming for the Gulf of St. Lawrence in the fall and the maximum alongshore current in the winter. This reveals that the density gradient is not the only major parameter explaining the seasonal and inter-annual variability of the NSC: the geometry of the density front also plays an important role. This makes wind forcing a potential major driving mechanism of the NSC, as alongshore winds can significantly affect the geometry of the density front via Ekman transport.