Ribosomes in the sea: a window on taxon-specific lysis

Xu Zhong1, Jennifer Wirth1,2 and Curtis Suttle1,3, (1)The University of British Columbia, Dept of Earth, Ocean and Atmospheric Sciences, Vancouver, BC, Canada, (2)Montana State University, Department of Plant Sciences and Plant Pathology, Bozeman, MT, (3)Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Toronto, ON
Abstract:
Microbes are estimated to comprise more than 90% of the biomass in the world’s oceans, are major drivers of biogeochemical cycles, and have turnover rates ranging from hours to days. Despite the central role that microbes play in marine ecosystems, there is no robust method to evaluate taxon-specific mortality rates. Here, we report a method that employs extracellular free-ribosomes as a proxy to evaluate taxon-specific microbial lysis. The method was validated with laboratory cultures of the marine heterotrophic bacterium Vibrio natriegens strain PWH3a and the photoautotroph Synechococcus strain DC2, with and without grazers or viruses, to identify the origin and fate of the extracellular free-ribosomes. Our results showed both viral lysis and programmed-cell-death (PCD) contribute to free-ribosome production. Ribosomes were not released when cells were grazed, but grazers could consume free-ribosomes. We show that extracellular free-ribosomes can be used to evaluate microbial mortality caused by viral lysis and PCD. This approach was applied to environmental samples by examining the taxonomic composition and relative abundance of free 16S-ribosomes in seawater samples collected from the Strait of Georgia and Saanich Inlet, British Columbia, Canada. Based on the presence of free ribosomes, lysis was detected in 2198 out of 4013 prokaryotic taxa, representing 22 bacterial and three archaeal phyla. Of these, lysis of 140 taxa could be detected in all nine samples. Based on the ratio of free ribosomes to cellular ribosomes, some taxa associated with specific ecological niches appeared to be subject to high rates of lysis, including the genera Achromobacter, Chryseobacterium, Clostridium, Delftia, Ferruginibacter, Lactobacillus, Marinomonas, Massilia, Microbacterium, Ochrobactrum, Paenibacillus, Phyllobacterium, Pseudomonas, Rhodobacter, and Stenotrophomonas. Our results showed high-lysis coupled with low-abundance, suggesting that taxa in lower abundance are subject to higher relative rates of cell lysis, consistent with previous suggestions. The ability to estimate taxon-specific mortality as the result of cell lysis adds an important tool in our quest to explain the distribution and abundance of specific microbial taxa in nature.