Mean-Eddy-Turbulence Interaction through Canonical Transfer Analysis: Theory and Application to the Kuroshio Extension Energetics Study

X. San Liang, NUIST Nanjing University of Information Science and Technology, Nanjing, China
Abstract:
Central at the processes of mean-eddy-turbulence interaction, e.g., mesoscale eddy shedding, relaminarization, etc., is the transfer of energy among different scales. The existing classical transfers, however, do not take into account the issue of energy conservation and, therefore, are not faithful representations of the real interaction processes, which are fundamentally a redistribution of energy among scales. Based on a new analysis machinery, namely, multiscale window transform (Liang and Anderson, 2007), we were able to obtain a formula for this important processes, with the property of energy conservation a naturally embedded property. This formula has a form reminiscent of the Poisson bracket in Hamiltonian dynamics. It has been validated with many benchmark processes, and, particularly, has been applied with success to control the eddy shedding behind a bluff body. Presented here will be an application study of the instabilities and mean-eddy interactions in the Kuroshio Extension (KE) region. Generally, it is found that the unstable KE jet fuels the mesoscale eddies, but in the offshore eddy decaying region, the cause-effect relation reverses: it is the latter that drive the former. On the whole the eddies act to decelerate the jet in the upstream, whereas accelerating it downstream.