The Effect of Various Species of Macroalgae on the Growth, Survival, and Toxicity of Karenia brevis

Kayla Grace Gardner, University of South Carolina-Columbia, Marine Science, Columbia, SC, United States, Vincent John Lovko, Mote Marine Laboratory, Phytoplankton Ecology, Sarasota, FL, United States and Michael S Henry, Mote Marine Laboratory, Ecotoxicology, Sarasota, FL, United States
Abstract:
Harmful algal blooms (HABs) caused by the dinoflagellate Karenia brevis produce toxins that result in negative impacts to both humans and the environment. Little is known about the termination stages of these blooms, and few viable control mechanisms have been suggested. Natural, algae derived compounds have been proposed as a way to limit bloom growth and reduce brevetoxins in the water column. The work presented here examines the ability of macroalgae to inhibit the growth or survival of K. brevis, similar to what has been demonstrated with other red tide species. Additionally, we attempted to determine if macroalgae decreases water column brevetoxins which, to our knowledge, has not been tested with macroalgae but has been demonstrated in other studies with microalgal species. The macroalgae species Dictyota sp. and Gracilaria sp. caused 100% mortality of K. brevis in under 24 hours. Compared to the control, 7 other species significantly decreased the growth rate of K. brevis. The Dictyota treatments showed significant toxin reduction and increase of the antitoxin brevanol. These results indicate that some combination of compounds produced by macroalgae inhibit growth and survival of K. brevis and possibly limit their toxin production. Future studies will attempt to isolate and identify these compounds and test their effects on other marine organisms such as diatoms. Determining the interactions between HAB species K. brevis and macroalgal species will provide insights on the mechanism of bloom termination and a potential control method.