Alteration of Chemical Composition of Soil-leached Dissolved Organic Matter under Cryogenic Cycles
Alteration of Chemical Composition of Soil-leached Dissolved Organic Matter under Cryogenic Cycles
Abstract:
Arctic permafrost thawing has drawn great attention because of the large amount of organic carbon (OC) storage in Arctic soils that are susceptible to increasing global temperatures. Due to microbial activities, some of the OC pool is converted in part to greenhouse gases, like CH4 and CO2 gas, which can result in a positive feedback on global warming. In Artic soils, a portion of OC can be mobilized by precipitation, drainage, and groundwater circulation which can in some cases be transported to rivers and eventually the coastal margins. To determine some of the mechanisms associated with the mobilization of OC from soils to aquatic ecosystems, we conducted a series of laboratory soil leaching experiments. Surface soil samples collected from Healy, Alaska were eluted with artificial rain at a constant rate. Leachates were collected over time and analyzed for dissolved organic carbon (DOC) concentrations. Concentrations began from 387-705 mg/L and then dropped to asymptote states to 25-219 mg/L. High-resolution spectroscopy was used to characterize colored dissolved organic matter (CDOM) and CDOM fluorescence intensity also dropped with time. Fluorescence maximum intensity (Fmax) for peak C ranged from 0.7-4.2 RU, with Exmax/Emmax = 310/450 nm. Fmax for peak T ranged from 0.5-3.2 RU, with Exmax/Emmax = 275/325 nm. Peak C: peak T values indicated preferential leaching of humic-like components over protein-like components. After reaching asymptotic levels, samples were stored frozen and then thawed to study the cryogenic impact on OC composition. CDOM intensity and DOC concentration increased after the freeze-thaw cycle. It was likely that cryogenic processes promoted the breakdown of OC and the releases of more DOC from soils. PARAFAC of CDOM excitation and emission matrices (EEMs) will be used to analyze CDOM composition of the soil leachates.