Long-term Changes in Habitat Provision by a Temperate Benthic Bioconstructor Threatened by Extreme Events

ABSTRACT WITHDRAWN

Abstract:
In a wide range of temperate environmental settings, long-lived, carbonate benthic organisms provide the framework of biogenic constructions, which create and maintain habitats and ecological niches for many species. These physical structures provide living space which progressively increases as framework grows. In temperate waters, bryozoans can have reef-constructing roles, and can substitute for corals in abundance and structure. As all bioconstructional species, they are seriously threaten by climate changes and its consequences such as thermal anomalies. The present study provides an assessment of changes in habitat provision by a reef-forming bryozoan dominating sub-tidal rocky reefs in the Ligurian Sea (NW Mediterranean) through 9-year time. Large ellipsoidal foliaceous colonies of Pentapora fascialis were monitored in 12 replicated stations (area: 1 m2) at two depths (11 and 22 m) from 1997 to 2005. Variation of living space (i.e. empty colony spaces) was computed by using colony width and high recorded annually. Impacts and long-term consequences of the 1999 and 2003 thermal anomalies were evaluated as changes in empty colony spaces. Over the 9 year monitoring, living space resulted more abundant at the deep stations (2947±617 cm3) than at the shallow ones (1652±494 cm3). Rapid decline in living space (90% and 94% reduction at 11 and 22 m stations, respectively) following the 1999 event was mainly due to the necrosis and reduction of the largest colonies. Differently, after the 2003 thermal anomaly the living space decline occurred gradually during the following 2 years. Interestingly, between the two events, colonies at the deep stations regained living space to pre-disturbance level (5671±1862 cm3) showing higher resilience to disturbance. Detecting effects of extreme events on bioconstructions and associated biota will contribute to the assessment of biodiversity changes and to predict future changes in threatened marine ecosystems.